
Constructors

There is one more element to a typical class definition --
the constructor method.

Consider the following program:

class Person:
 def setName(self, myName):
 self.name = myName

def main():
 x = Person()
 x.setName("bob")
 print(x.name)
 y = Person()
 print(y.name)

This crashes on the call to print y.name because variable name
for object y hasn't been created; it is only created when the
setName() method is called.

This is unacceptable; we don't want the instance variables of an
object to exist only when methods are called in the right order.

Instead of this, almost all classes use a "constructor method".
The job of a constructor is to give initial values to each of the
instance variables of the class.

In Python, the constructor method has the (weird) name
_ _ init_ _(self, ...)

This is the function that is called when we construct new object
(remember that is done by using the class name as a function).

The constructor method is allowed to take arguments in
addition to self. For example, a constructor method for a
class Person that has instance variables name and age might
be

def _ _init_ _ (self, myName):
 self.name = myName
 self.age = 0

The call that constructs a new object needs to give a value for
each parameter of _ _init_ _() other than self.

For example with the constructor above we would create a
new Person with
 x = Person("bob")

Consider ProgramA. What will it print?

A. Nothing
B. It gets an error message
C. 1

Consider ProgramB. What will it print?

A. Nothing
B. It gets an error message
C. 1

